Anomalous Source-side Degradation of InAIN/GaN HEMTs under ON-state Stress

Yufei Wu, Jesús A. del Alamo

Microsystems Technology Laboratories, Massachusetts Institute of Technology

October 04, 2016

Sponsor: NRO Contract No. DII NRO000-13C0309 Collaborator: Jose Jimenez (Qorvo)

Outline

- 1. Motivation
- 2. Source-side degradation under ON-stress
- 3. Gate leakage current and its temperature dependence
- 4. Positive gate stress
- 5. Conclusions

Motivation: InAIN as barrier

Al _{0.2} Ga _{0.8} N/GaN	In _{0.17} Al _{0.83} N/GaN
6.5 x 10 ¹²	2.7 x 10 ¹³
5.3 x 10 ¹²	0
1.2 x 10 ¹³	2.7 x 10 ¹³
	Al _{0.2} Ga _{0.8} N/GaN 6.5 x 10 ¹² 5.3 x 10 ¹² 1.2 x 10 ¹³

[J. Kuzmik, EDL 2001]

- High spontaneous polarization in InAlN → high 2DEG density
- InAlN thickness scaling → gate length scaling
 → W- and V-band applications

 $In_{0.17}Al_{0.83}N$ lattice matched to GaN \rightarrow Potentially better reliability!

3

Motivation: InAIN as barrier

InAIN/GaN HEMTs

- W-band
- E-mode

Four gate geometries:

- W_g = 8 X 25 μm
- $W_{g}^{-} = 8 \times 50 \,\mu m$
- W_g = 2 X 25 μm
- $W_g^{\circ} = 2 \times 50 \,\mu m$

[Saunier, CSICS 2014]

High-V_{DS}-high-I_D stress

Stress and characterization conditions:

- $V_{DS,stress} = 25 \text{ V}, \text{ I}_{Dstress} = 400 \text{ mA/mm} (V_G \sim 1.5 \text{ V}), 5 \text{ mins}, \text{RT} (T_j \sim 136 \circ \text{C})$
- Characterization: @ 25 °C after thermal detrapping

Permanent degradation:

- Significant I_{Dmax} degradation
- $\Delta V_T > 0$
- Significant I_{Doff} degradation

High-V_D-high-I_D stress

After thermal detrapping, gate current degradation:

- Large increase in I_G after stress
- After stress: I_G = I_S >> I_D in forward and reverse bias
- Source-side damage unexpected!
- Uncommon but previously observed in AlGaN/GaN HEMTs [J. Joh, IEDM 2010]

Temperature dependence of I_G and I_D

Before stress:

- For moderate V_{GS} , negative T coefficient \rightarrow thermionic emission limited current
- I_S behaves similar to I_G

After stress:

- Significantly reduced T dependence for I_G and I_S
- I_D less affected \rightarrow degradation on source side

HRTEM of a virgin device

HRTEM of stressed device

Disordered region in GaN channel at gate edge on source side

Hypothesis for Damage

High $V_{DS,stress}$ + high $I_{Dstress}$ \rightarrow high $I_{Gstress}$ too

 \rightarrow high I_{GS}

 \rightarrow high T_j

 \rightarrow high electric field across AIN barrier on source side

Conditions favor defect formation in AIN barrier on

source side $\rightarrow I_{GS} \uparrow$ Also, gate sinking $\rightarrow \Delta V_{T} > 0$

Positive V_G step-stress-recovery experiment

Stress and characterization conditions:

- V_{GS,stress} = 0 2.5 V, V_{DS,stress} = 0 V, step = 0.1 V, RT (T_j ~ 48 °C)
- Characterization: @ 25 °C after thermal detrapping

Permanent degradation:

- Significant I_{Dmax} degradation
- $\Delta V_T > 0$
- Significant I_{Doff} degradation

Time evolution of I_{Dmax} and I_{Goff}

Stress conditions:

- $V_{DS,stress} = 0 V, V_{GS,stress} = 0.1 2.5 V in 0.1 V steps$
- stress time = recovery time = 150 s; characterization every 15 s

- $|I_{Goff}|$ starts to increase from $V_{GS,stress} \simeq 1.7 V \rightarrow trap generation in AlN$
- I_{Dmax} starts to severely degrade from $V_{GS,stress} \sim 2.3 \text{ V} \rightarrow \text{gate sinking}$

Time evolution of I_{Gstress}

Stress conditions:

- $V_{DS,stress} = 0 V, V_{GS,stress} = 0.1 2.5 V in 0.1 V steps$
- stress time = recovery time = 150 s; characterization every 15 s

• $I_{Gstress}$ increase becomes significant for $V_{GS,stress} \ge 2.3 V$

Gate current degradation

After thermal detrapping, gate current degradation:

- Symmetric degradation: $I_s \approx I_D \approx I_G/2$
- Reproduced degradation signature of high-V_{DS}-high-I_D stress: high forward V_G leads to increase in I_G

HRTEM of stressed device

Disordered region in GaN channel at gate edge on drain side

Disordered region in GaN channel at gate edge on source side

Conclusions

- Permanent degradation after High-V_{DS}-high-I_D stress: $\circ I_{Goff} \uparrow \uparrow \rightarrow$ Defect formation in AIN barrier on source side $\circ \Delta V_T > 0$, $I_{Dmax} \downarrow \downarrow \rightarrow$ Gate sinking \circ Affects source side
- Positive gate stress:

○ Reproduced degradation signature of high-V_{DS}-high-I_D stress:
 I_{Goff} ↑↑, ΔV_T > 0, I_{Dmax} ↓↓
 ○ I_S ~ I_D ~ I_G/2 → Symmetric degradation on source and drain side

Thank you & Questions?